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AN ALGORITHM FOR IMPROVED GATING
COMBINATORICS IN MULTIPLE-TARGET TRACKING

I. Introduction

In this paper we describe a method for significantly reducing the computational com-
plexity required for observation-track gating in multiple target tracking. We define
the gating process as follows: given a set of N "observations and IT tracks, identify
all observation-track pairs whose scores fall above a chosen threshold. The score for
observation-track pair (ij) is defined as the function:

Sjj (dxij, ,r) = exp(-dX!,r-'dXij /2) (1)

where d is the measurement dimension, rj is the residual covariance matrix of the track
j, and dXij is the residual vector of the pair (ij), and these arguments are taken to
be valid at the same time. In addition, throughout this study we shall use the score
threshold, Sj, chosen for every observation j such that:

S<j <_ Sj. (2)

In part because Eq. (1) is very expensive to evaluate, much of the previous work on
gating has emphasized the use of intermediate or "coarse" gating criteria which replaces
the calculation of Eq. (1) with a function that is computationally cheaper to evaluate.
The result is the identification of a superset of candidate pairs which includes the pairs
that satisfy Eq. (2). We denote the subset satisfying Eq. (2) as either the pairs which
correlate at gating or the pairs which satisfy the final gate. Typically this pre-processing
includes defining a gating volume, VG, based on the numerator of the right-hand side
(RHS) of Eq. (1) so that a coarse correlation measure is evaluated assuming a Gaussian
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distribution as in Eq. (1). For example, the pairs pass one gate if -tVG < (dXt, 1dX),
where 7VG is a threshold that may be obtained from a table or an error function inte-
gration for a certain probability of correlation [1, page 97] [2, pages 88ff]. These pairs
might also be pre-processed by coarser gating criteria with larger VG but which are
cheaper to evaluate [2, page 91], [1, page 97]. Ideally, one completes the gating calcula-
tion by computing Sij for the set of candidate pairs and performing the comparison in
Eq. (2). Overall processing work would be reduced since only the pairs with sufficiently
high coarse correlation values would be re-evaluated using the numerically expensive
function of Eq. (1).

These techniques address the coefficient of the scaling but not the scaling itself since they
explicitly apply a coarse correlation function to all NTNR possible pairs. If the number
of pairs explicitly evaluated by coarse gating are of order (NTNR), then for sufficiently
large NT and NR, real-time processing can be precluded on any computer even with
the use of numerically simple coarse correlation functions. More recently Nagarajan et
al.[1, pages 97-98) have recognized that one can can reduce the number of times that a
coarse correlation function is evaluated. An algorithm is presented for doing so, but the
analysio of scaling is incomplete. In particular, neither cost nor scaling equations of the
gating process are presented in terms of parameters important in multitarget tracking,
e.g. NT or NR. Partitional spatial clustering methods have been proposed to efficiently
perform gating by exploiting features of the target distribution[3] 1. However, improved
scaling cannot be guaranteed for these data dependent algorithms. The objective of this
paper is to present an efficient gating algorithm and to analyse its scaling. We shall show
that the overall algorithm scales significantly better than quadratic even when reports
have unequal timestamps within a scan. Our algorithm is compatible with virtually
all of the previous work on auxiliary gating criteria and coarse gates. As a secondary
objective we present an inexpensive algorithm for calculating a coarse time independent
gate volume for the criterion of Eq (2).

II.Preliminary Details

By a d-dimensional report, or observation, we mean a set of d elements measured simul-
taneously at some specified time. We call this time the validity time of the observation
or the timestamp of the observation. We require that the timestamps fall within a period
of time called a scan of length r, where the times of the reception of the first and the
last observations fix the beginning and the end of the scan. A track is an estimate that
in some sense converges to the "true trajectory" as the number of observations correctly
matched to the track increases. There are I position components to each track at any
one time. Similarly, the observations are e-dimensional in position, with I < d.

In our analysis and numerical simulations we employ algorithms which find near neigh-
bors of points in I-dimensional position space, where nearness is defined by the Eu-
clidean metric. They are used, for example, to find the tracks with mean positions near
a given observation position. Essential is that: (1) these algorithms find all the neigh-
bors in some expected optimal or near optimal time, and (2), that their performance be
relatively insensitive to spatial distributions. After examining several search algorithms,

'For cluster type distinctions, see [4]
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we selected a BLD-enhanced k-d search tree for our tests )[6]. These data structures
are known to have a worst case single-query search time scaling of O(N1 - + NG), where
N is the size of the database being searched and NG is the number of near neighbors
returned. In many applications (including our tests) their average case search time
scaling approaches O(log N + NG). For a background on multidimensional search struc-
tureS the reader might consult Bentley [7], Friedman et al. [8] and [9], Hanan [10] and
Mehlhorn[11). For an introduction to these algorithms the reader might consult [121.

III. Problem Overview in Light of Combinatorics

Given a set of NT tracks and a set of NR reports, there are at most NTNR scores
Sij which can be formed. Of these, a fraction q of them will fall above the thresholds
and satisfy Eq. (2), where q could be as low as 1/NT or 1/NR or smaller. Ideally we
would only calculate the qNTNR scores; at worst we would calculate all NTNR scores.
An example of a quadratic scaling approach, for the case when reports have unequal
timestamps, is the following technique: integrate the equations of motion of each of the
NT tracks to the times of each of the NR reports and compute the scores. For each
report, keep those scores that are above the desired threshold. The dominant cost of this
is the O(NRNT) score calculations and integrations. Of course, if each score calculation
is replaced by a coarse gate calculation, the scaling is still quadratic.

Intuitively, when tracks and reports a! 2 at the same time, tracks and reports that are
close in position tend to be correlated. Of course, Eq. (1) specifies the meaning of
correlation at gating and shows that other parameters in addition to mean positions
must be considered. The covariances will in part determine a gate volume around the
mean positions, and we conceptually relate gating to geometry by saying that reports
and tracks which gate with each other are those pairs with intersecting gate volumes.
Let N,, be the number of tracks per report that should gate, as determined by Eqs. (1)
and (2). Let the gating volumes be determined ideally in the sense that the set of pairs
which should gate by Eqs. (1) and (2) is identical to the set of pairs which gate. Let p
be the object density and VIG the ideal gating volume per report. Let the average of a
quantity X over all the reports be given by X. Then the total number of gating pairs
is N, NR = PVIGNR = qNTNR.

The prescription herein for calculating "not much more" than the required qNTNR
scores involves in part using estimates of ViG, say VG, in a search structure for identifying
the pairs. We have chosen a neighborhood search volume to be spherical in nature,
although it is not necessarily optimal. A search radius RG specifies the search volume
VG. We denote RG by JIo when a given report has the same timestamp as the track
file to be searched. When the number of correlations that should be made is small,
i.e. when qNTNR is not comparable to NTNR, then PVIGNR is also small. Assume we
can find an R0 per report such that: (1) the actual search neighborhood per report,VG,
includes Vi3 and (2) PVG is comparable to PTVG.

When there is a distribution in time of tracks and reports throughout a scan, then
the required search radius RG might on average define a search neighborhood so much
larger than VIG such that the number of candidate pairs found is no longer comparable to
qNTNR. After all, we cannot merely superimpose the tracks and reports and ask which
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error ellipses intersect since evaluation of Eq. (1) requires that the function arguments
correspond to the same time. If we instead ask which ellipses would intersect if they
were at the same time, then the gating volume around the report's position should take
into account bounds on the location possibilities of the objects due to their dynamics
and the time differences between the report and the tracks. In this case the estimate of
the gate volume is also time dependent, i.e. VG = VG(6T, Ro), and we model its search
radius as

RG = R0 + albT , (3)

where a is some upper bound on the velocity and 6T is the maximum time difference
possible between any track and a report within the scan r and possibly equal to r itself.
Thus scaling could depend on the two parameters on the RHS pf Eq. (3). In discussing
our algorithm we find that two limiting cases of Eq. (3) are particularly convenient:

aI6TI << TO, (4a)

and

aeTj >> Ro. (4b)

We denote the former case as the "small scan length search" case and the latter case
the "large scan length search" case. Because of Eq. (3) and Eq. (4a), the conclusions
of the next section on the zero scan length case apply to the small scan length case.
The following section introduces the general algorithm through a discussion of the large
scan length case. The mathematical analysis of the cost for any value of aI6TI/Ro
is presented afterwards. We also prove that the general algorithm has its worst case
scaling in terms of a and r when Eq. (4b) holds.

IV. Zero Scan Length

In the idealized case of the zero scan length, all reports from a given scan have identical
timestamps. To perform gating, the track file is projected to the time of the reports,
then the search radius will not depend on object dynamics since 16TJ = 0 in Eq. (3). For
the solution of the equal timestamp case, therefore, we calculate a search radius from a
given score threshold. More specifically, in doing a search per scan per report j on a track
file, we will determine the following: given a score threshold Si, calculate the radius
per report, RG = R0 = Ro(Sj), such that all the report-track pairs which are separated
by distances larger than R0 will not have scores above the threshold. Calculation of
this radius is complicated by the fact that the tracks in our database have nonidentical
covariance matrices, or hyperellipses, of nontrivial distribution in volume and shape.

Consider, however, the case where d = 1. For a one dimensional Gaussian function
with a fixed r, the function value is strictly nonincreasing as its argument R2 increases
and falls below the threshold after R2 gets laiger than some value, say R20. One can
then determine analytically an R2 that is independent of the r distribution. Figure 1
below is a contour plot for the function S(-y,r) = exp(-r 2 /2-y)//V(2r-y). The lines in
the figure are actually iso-score lines. Notice that each exhibits a maximum radius rmax
such that for scores exceeding the threshold, all possible r are smaller than rm. This
rmax is a suitable choice for R0. Appendix I has a derivation for a useful search radius

for dimension d > 1; the result is:
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16R 2  < M . (A12,5)

crk -2re(a)

where (a2) is an upper bound on the maximum eccentricity among the error ellipses in
a scan.

Equation (A12) gives a suitable choice for R0 since: (1) all tracks which can correlate
with observation j will be within R0 of the observation, and (2) it is a track-independent
radius and thus can be used for a search on a track file. We should note that other pre-
scriptions for calculating time independent gate volumes might meet the above criteria.
Such prescriptions might differ in how close VG(Ro) approaches VG1 and how expensive
it will be to calculate VG(RO). Preliminary analysis indicates that our VG(Ro) is a rather
coarse gate that is inexpensive to calculate.

Though the equal timestamp behavior of the search algorithm is straightforward enough,
we include Plot 1 with data from a simulation (see Appendix II). Plot 1 verifies the search
time scaling for an unequal timestamp case which is not quite the r = 0 limit, but with
relatively small differences in timestamp. In this case -r and our overestimate of V1G
were small enough so that the dominant term in the scaling of the BLD tree is seen
to be close to the O(NRlog NT) diagonal line in the figure. The O(NTlogNT) CPU
expense of creating the data structure was also verified.

V. The General Algorithm and Analysis for the ulTI >> Ro Case

When the reports have unequal timestamps what are the best times to which to integrate
the tracks for making the potential pair matching? Following the textbook procedure
of making all the tracks valid at the beginning or all valid at the end of the scan can
result in the case of Eq. (4b) and possibly in a combinatorial bottleneck. We have made
the following observations: (1) some search structures are cheap to make, CPU wise,
and (2) by making various copies of the track data structure - the various copies valid
at different times - a tradeoff can be made between the time spent on the creation of
the data structures and the time spent on searching and scoring. We shall see that the
payoff from spending more time in creating data structures increases as the scan length
contribution to VG increases, given that the other relevant parameters are held fixed.

If we integrate in time to make MD sequential track data structures (TDS) valid at
MD equally spaced times within the scan of length r (See Fig. 2), then any report
would be at most 16T[ = r/(2MD) time units away from a TDS. The average radius
for the search is then decreased by the factor MD as compared to the case where we
have one TDS copy at the middle of the scan. Therefore the volume extent as well as
the average number of candidates returned (NG) is smaller by (1/MD)i in the isotropic
dense limit 1-dimensional case. More precisely, assume that the density p of objects
in space is constant and uniform. Then the average number of candidate tracks found
for each report depends on the average search volume VG - (t)(R'), where -f(t) is a
geometric factor depending on the dimension t of the report state vector. The brackets
(-) denote the average over the temporal range (t, - bT, t1 + bT), where i(R) labels the

TDS selected to be closest to the report. Assuming that the time distribution of reports

5



within the scan interval is uniform,2 using Eq. (3) gives us:

VG - M1)a6T [(Ro + alT) +' 
- (Ro)t+ I], (6a)

V 'Y() aff) (6b)

N 2zP7(t) (abjt =p7(t) Ma~._A0  =~-(a6D p- p7 tp)M 5  .(7)

The RHS of (6b) assumes the high scan length search condition of Eq. (4b), i.e.

albTl = ar/2MD > Ro. (8)

Since the searching time and the scoring time depend on NG, the scoring time being
directly proportional to NG, the use of multiple extrapolated track files (MD > 1) to
cover the scan interval can reduce the cost of the gating process by reducing the search
volume.

Plot 2 shows an example of poor scaling due to a "large" scan length. The trajectories
which generated the data for Plot 2 are equivalent to those for Plot 1 except that the
scan length is increased by a factor of five and therefore the average search radius is also
increased. In this case the search algorithm's visible CPU cost was not O(NR log NT).
For NT = NR = 32K, the search time increased by a factor 5, Pnd the number of near
neighbors returned was increased by a factor of about 10. Plot 3 shows how the scaling
of the search time behaves for the same report scenario as in Plot 2, except that now
MD = 5 for the datasets of 4K and 32K tracks. The best fit lines approach the log NT
scaling line more closely. For the same runs and NT = NR = 32K, the number of near
neighbors returned, and therefore the number of pairs which would be evaluated with
Eq. (1), decreased by an average factor of 9.8 when MD was changed from 1 to 5. This
reduction also signifies that the number of tracks per report found to meet the time
dependent gate volume was nearly reduced to its simulation optimum average value of
1. This factor of 9.8 was found to be 62.7 if the one TDS was placed at the time of the
beginning of the scan instead of the recommended placement for MD = 1!

Was the price paid for overhcad of the multiple data copies too high so that the overall
cost would still scale poorly? Let N be the report averaged number of near neighbors
returned. Then the total CPU cost can be modeled as

C(NT, NR, MD, NG) = CeMDNT+CdMDNT log NT+CeNR(log NT+NG)+CcNGNR

(9)

where the terms on the RHS of Eq. (9) give, respectively, the cost for integrating the
tracks to the desired time of the data structures, the cost of making the tree data

2 An overestimate of the worst case is when the reports are 6T = r/(2MD) time units away from a
TDS, i.e. at the furthest possible time difference, where the reported average case is small by 21/(t + 1)
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structures, the cost of searching the appropriate tree data structure for each report, and

the cost of scoring the pairs.

Equation (9) with our model for Eq. (7) has a minimum value which occurs for the
following optimal AID

MDO ((2)/(+1) (10)

K1

where
r, -I NT(Ce + Cd log NT),

K2 - NR(Csc + Ce)-Py) (11)

and the total cost is

Cin z C.,NR log NT + MDO +(CeNT + CdNT log NT). (12)1
The above equation depends on the important parameters for scaling of multitarget

tracking, as previously argued, except that it does not depend on combinations of RO
with ar because of the approximation in Eq. (4b).

VI. Analysis of the General Algorithm

Let = ar/(2RoMD), where the symbol for the number of TDS is now MD to make

a distinction for the limit of Eq. (4b). Instead of taking the approximation in Eq. (6a)

leading to Eq. (6b), use the binomial expansion and NG = pVG to obtain from Eq. (6a):

t+1
N+ 1 (Ro't)l (1+1- & l,-. (13)

To find Cmi, it is useful to find the partial of Eq. (13) with respect to MD:

(NG/e9MD = -P7+)L (R. (14)ONGOAo - 1+ 1 Ma , 1 +/

This allows us to obtain an equation for the number of TDS that minimize the cost of

Eq. (9):
-1+ D ju + it+1) (_)t-i. (15)

The above is a polynomial equation for MDo of I terms and of degree t + 1. For I = 1,

MDO = MDO.

We now verify the Cmin of Eq. (12) (evaluated when ar >> 2RO) is an overestimate

when it is not true that ar >> 2R. We compare MDo and MDo for a given NT and

NR, and with a fixed estimate of PVIG through VG(Ro). Let rL be some value of a

scan length for which arL >> 2R0 and for which Eq. (10) was evaluated to be MDO(rL).
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Then, using the ratio of Eq. (15) at r and at rL and using Eq. (10) for ADO at rL , the
value of MDO at some arbitrary scan length is:

[ ( AIDo(TLYt+l ( (t+,) (2&M D  (16)
DO TL i1 ar(6

where the magnitude in the approximation, due to MDO(rL) = MDo(rL) is given by
Eq. (15). The equation above shows how to calculate MDO for an arbitrary scan length
given that it is evaluated for 7L. Also, Eqs. (9), (13) and (16) give the cost of the
gating process in terms of relevant parameters NT, NR, p, r, Ro, (and therefore Wo)
and combinations of them. Notice that each of the terms in Eqs. (13) and (16) have
their contribution in r in the form of r', where i is some positive integer. Thus NG (and
NG) and M1+1 decrease as r decreases on some interval (0,7L). Notice also that as NG
and MDO decrease, the cost as given by Eq. (9) decreases. And since for r- = rL, MDO

= MDO(1+ higher orders in 2Ro/arL), the large scan length case cost is an overestimate
of the cost for the general case witl. a smaller scan length and with the other parameters
held fixed.

VII. Discussion

Our choice of the time and dynamics dependent component of RG in Eq. (3) might
not be the only choice possible in that other models might exist which allow a range
search. However, making multiple projections of the data to be searched seems to be an
option for consideration whenever the bounds on the search range are large due to large
timestamp differences. Related to this is that not all of the search algorithms require
that the coordinate ranges per search be identical in all directions. It might be possible
to separate, by directional components, both R 0 and the time dependent component of
RG. What is required is that one search range per coordinate - and per report when
doing a search on tracks - be given to the search algorithm such that all pairs which
meet Eq. (1) are satisfied. If it is not true that on the average pVG(Ro) qN, where N
is the number of tracks when doing a search on tracks and where VG(Ro) is determined
as in our paper, it might be profitable to separate VG(Ro) into search components or
to calculate VG(RO) by a different prescription. However, it should be noted that Eqs
(10) and (12) are independent of Ro and so the previous suggestion might not improve
execution speed in the large scanlength case. On the other hand, execution speed in the
large scanlangth case might be noticably improved by a search space model that will
allow one to seperate VG(6T). Note that an algorithm that uses velocity information
may reduce the search volume to a half-sphere or nprhaps even a cone or a rectangle.
This has the effects of changing -y(f) but leaving Eq. (12), and therefore scaling, as is.

In additior to the above considerations, the value of the optimal number for MD depends
on the computer used, and relative software component speeds, through the constants
in Eq. (9). For example a vector computer with good floating point hardware will
no doubt reduce C4, over a generic computer; but because C1 can be reduced by an
even larger factor since vectorization of the integration of the equations of motion will
be straightforward and possibly complete. This will incline one to have a larger MD.
Performance discussion of different hardware/software setup can get quite detailed and
possibly in-house experimentation will be necessary for determining an optimal MD.
Finally, it should be noted that Eq. (9) was not presented with the obvious constraint



that MD be an integer greater than zero. Rounding up to an integer is advisable in
implementation when using Eqs. (10) or (16).

VIII. Conclusion

In this paper we have presented an efficient approach to gating in multiple-target track-
ing. It is general in the sense that it will perform with good scaling even for the case of
unequal observation timestamps. An analysis has been provided detailing how the al-
gorithm scales as a function of the important parameters: NT, AR, r,p and an estimate
of the time independent gate, VG(Ro). The algorithms has a worst case scaling, in the
timestamp parameter, as follows:

Cni, = O(NR + MDONT log AT),

where MDO Oc (pNRrt/NT(c+log NT)) I . It is also shown b.ow to calculate an optimum
number of search data structure in general, and how the algorithm scales in general.

Appendix I : Derivation of Search Radius
Covariances and Score Threshold Contribution

Given a report at observation time t and a set of tracks which have been projected to
time t, the gating process provides the subset of tracks whose scores exceed a threshold
value, denoted here as Stin. The successful application of efficient search algorithms
to improve scaling with the number of objects requires that a search region (or search
radius Ro) be defined independent of the particular track when doing a search upon
the track database. A satisfactory expression for the search radius, for example, must
ensure that all acceptable tracks fall within a distance Ro of the report. This appendix
derives such an equation for the search region.

Consider a given report and track pair whose respective labels are i and j, whose Al-
dimensional measurement-prediction difference is denoted bX = bXij in Eq. (1), and
whose position displacement is denoted by 6R =_ 6Rj . To obtain a search criterion,
use the axiom that if the score Sij ! Stan, then the maximum possible score So (given
6X) must also exceed Stain. For this value of bX, therefore, we compute the covariance
matrix r0 which maximizes Sij. The matrix F0 depends directly on bX, and, therefore,
so does So. Comparison of So with Stain establishes a necessary condition between 6X
and Smin for all satisfactory track-report pairs. This condition gives an upper bound
on the search area or radius, but not necessarily a least upper bound. For each report,
one can identify a subset of tracks which should contain all tracks meeting the scoring
criteria as well as a small number which do not. Performing this identification for all
reports results in a set of candidate track-report pairs. Computing the actual scores of
these pairs and selecting those whose scores exceed the threshold Stin completes the
gating process.

We begin with Eq. (1) and notice that both the argument of the exponential in the
numerator and the determinant of the the covariance matrix F in the denominator are
invariant under similarity transformations of the coordinates. Assume that a transfor-
mation exists which renders F diagonal with nonzero elements given by the eigenvalues
,\I, \ 2 ,..., AM. Here d is the dimension of the (Euclidean) report state vector space.
Then for a given report-track pair, the score is

9



I bl d

-logs = 1 + log2r + log A, (A1)

k- 2=1

Note that the vector 6Xhas also undergone transformation, although we retain the

same notation for convenience. For a given value of 6X, we now wish to find the set
of eigenvaues {Ak} which maximize the score. This requires that we take the partial
derivative of the right hand side of Eq. (Al) with respect to each eigenvalue Ak and set
the resulting expression equal to zero. In this way we obtain the condition

Ak = bXk, Vk .(M2)

Substituting this in Eq. (Al) gives us

d1
-log So = d +og2ir+ 1 Ao)

From Eq. (A3) and the necessary condition for a given track-report pair to have a score
exceeding Sni we obtain the following condition for the search volume (region):

- 1 Sd (A4)
(6'=27re - 21re'" ()

d

(6X2)-" (f' 6X2) (A5)

k=1

is the geometric average of the components of the difference 6R between the track and
report positions in the basis which diagonalizes the covariance matrix.

Equations (A4-5) constitute our most general result. This case, is not straightforward
in allowing the definition of a search radius, since the geometric average and arithmetic
average of the squared components of the vector 6X satisfy

2b XX2 2  (A6)k d(M

by a theorem in mathematical analysis. One can see the reason by considering the cir-
cumstance in which the sensors have isotropic resolution. Then the covariance matrices
will have d-fold degenerate eigenvalues so that

Ak= d6X2 (isotropic case) (A7)

will maximize the score in Eq. (Al) and the result corresponding to Eq. (A4) is
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1Ri 2 < iX12 < d (AS)

Because the magnitude of the track-report displacement appeairs on the left-hand side
(LHS), the expression on the right-hand side (RHS) constitutes a search radius, denoted
as R0 .

For the more general case, it :s necessary to have an estimate of the limits of anisotropy
of the set of residual covariances for the coordinate system where the near neighbors
search is done. Overestimates can be obtained if the set of eigenvalues for all the residual
covariances are known. Obtaining the eigenvalues is an O(NT) operation which for two
and three dimensions does not have to be expensive, as we will suggest latter. (this
should be a note.) For the jth track in the database, let the ratio of the kth principal
axis to the longest principal axis be given by ak, where ak3 < 1. The eigenvalues of

matrix rj should then satisfy

A' = A (A9)

where AJ is the largest eigenvalue of rj. We now choose the ri which has the smallest

geometric mean of the a2's. For this r, then, with Eq. (A9) and Eq. (Al) and computing
the optimum value of A gives us

1 1( Xk)2
(A10)

o 2 e( 2 ) 'd E (Xk2
s"-2-re(f ) Z(d Ak) (All)

Denoting the geometric average as before, noting the necessary condition on So, and
remembering that ak < 1, we obtain

16R 2 < ,X, Z(-xk)2 2'e(a)( '5 )- ' = R  (A12)

Again since 16R12 appears on the LHS, the extreme RHS defines a search radius Ro.

Appendix II : Scenario Description

For the sake of completeness we state that the basic scenario presented in this paper
consisted of NT = NR reports and tracks obtained by adding Gaussian noise to ground
truth trajectories. The ground truth was in an XYZ common coordinate system. The
trajectories were Newtonian and parabolic with a constant gravitational force in the Z-
direction; also they were determined by choosing initial positions and final destinations
random in X,Y with Z = 0 and bounded on the X - Y plane with one rectangle for
the initial positions and another for the final destinations. The two rectangles were set
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sufficiently far apart so that the average flight would be about 25 minutes in duration
with the ground truth objects flying at about 11 km/sec. A scan consisted of a sampling
on the trajectories in the form of reports with timestamps within a scan of length r.

The only parameters changed to generate all the data presented in the plots were NR

(and NT), r ,MD (the number of track data structure copies), and the object density
as a consequence of changing NR (and NT).
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